QUIZ 5 Solutions

Problem 1

Find polynomials $\mathrm{q}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})$ such that $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$, and $\mathrm{r}(\mathrm{x})=0$ or $\operatorname{degr}(x)<\operatorname{deg} g(x)$:
(a) $\mathrm{f}(\mathrm{x})=3 x^{4}-2 x^{3}+6 x^{2}-x+2$ and $g(x)=x^{2}+x+1$ in $\mathbb{Q}[\mathrm{x}]$
$\mathrm{f}(\mathrm{x})=\left(x^{2}+x+1\right)\left(3 x^{2}-5 x+8\right)+(-4 x-6)$
(b) $\mathrm{f}(\mathrm{x})=2 x^{4}+x^{2}-x+1$ and $g(x)=2 x-1$ in $\mathbb{Z}_{5}[x]$
$\mathrm{f}(\mathrm{x})=(2 x-1)\left(x^{3}+3 x^{2}+2 x+3\right)+4$

Problem 2

If R has multiplicative identity 1_{R}, show that 1_{R} is also the multiplicative identity of $\mathrm{R}[\mathrm{x}]$.
proof: For any element $\mathrm{a}=a_{0}+a_{1} x+\ldots+a_{n} x^{n} \in R[x]$
$1_{R} * a=1_{R}^{*}\left(a_{0}+a_{1} x+\ldots+a_{n} x^{n}\right)=1_{R} * a_{0}+1_{R} * a_{1} x+\ldots+1_{R} * a_{n} x^{n}$
$=a_{0}+a_{1} x+\ldots+a_{n} x^{n}=\mathrm{a}$
$a * 1_{R}=\left(a_{0}+a_{1} x+\ldots+a_{n} x^{n}\right) * 1_{R}=a_{0} * 1_{R}+a_{1} x * 1_{R}+\ldots+a_{n} x^{n} * 1_{R}$
$=a_{0}+a_{1} x+\ldots+a_{n} x^{n}=\mathrm{a}$
Thus, $\mathrm{a}=1_{R} * a=a * 1_{R}$
So 1_{R} is also the multiplicative identity of $\mathrm{R}[\mathrm{x}]$.

